

Project Manager: Andrew Jones

Agreement #: FE0031718

Project Overview: A Scalable Process for Upcycling Carbon Dioxide (CO₂) and Coal Combustion Residues into Construction Products

Overall Project Performance Dates: 1/1/2019 - 12/31/2020 Project Participants: UCLA; Susteon Inc.

Overall Project Objectives:

Upcycle industrial wastes and CO₂ – Produce low-carbon CO₂Concrete products from coal combustion residues, flue gas CO₂, and low-grade waste heat

Project Funding Profile (20.31% Cost Share)		
	Gov't	Cost
	Share	Share
UCLA	\$1,200,000	\$382,265
Susteon Inc.	\$300,000	\$0
Total (\$) \$1,500,000 \$382,265		

- System design Produce data supporting heat and mass balances for design of a "bolt-on" CO₂ mineralization system at coal-fired power plants
- Field test CO₂ processing system Fabricate and field test a CO₂ mineralization system to consume about 100 kg of CO₂ per day from coal-fired flue gas

Project Manager: Andrew Jones

Agreement #: FE0031718

Technology Background: Low-carbon cementation by CO₂ mineralization

Demonstration of alpha prototype system

Preliminary LCA:

~ 65 % CO₂ emissions reduction relative to conventional CMU

Project Manager: Andrew Jones

Agreement #: FE0031718

Technical Approach/Project Scope: Experimentation, system design, fabrication, and field tests

- Experimental design and work plan: Acquiring bench-scale data describing CO₂ mineralization reaction and product performance in relation to composition and processing (temperature, relative humidity, flow rates)
- Process design informed by data \rightarrow system design and fabrication \rightarrow field testing at host site \rightarrow analysis/scaling

Key project milestones

9/30/19 **Completed** bench-scale experiments for

design inputs

12/26/19

Completed process design and bid specification

6/23/20

System fabricated and **FATs** passed

9/21/20

System installed and commissioned at host site

12/31/20

Completed field testing of CO₂Concrete system at host site

12/31/20

Completed design scaling, technoeconomic analysis, and lifecycle analysis

Key project success criteria (at project completion):

- CO₂Concrete formulations demonstrate CO₂ uptake between 0.05 to 0.50 g CO₂/ g reactant and compressive strength > 13.8 MPa for hollow-core block applications
- Field testing demonstrates 50 to 90 % CO₂ utilization efficiency using real flue gas at host site
- CO₂Concrete produced has a lifecycle footprint that is > 25 % smaller than OPC concrete of equal performance